

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

An investigation on the reaction pathway between LiAlH₄ and LiNH₂ via gaseous ammonia

Rugan Chen, Xinhua Wang*, Lixin Chen, Shouquan Li, Hongwei Ge, Yongquan Lei, Changpin Chen

Department of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province 310027, China

A R T I C L E I N F O

Article history: Received 26 October 2009 Received in revised form 8 December 2009 Accepted 14 December 2009 Available online 23 December 2009

Keywords: Hydrides LiAlH4 Hydrogen storage materials Complex hydrides

ABSTRACT

Interactions between LiAlH₄ and LiNH₂ through a gaseous ammonia intermediate have been investigated. LiAlH₄ and LiNH₂ powders with a molar ratio of 1:1 were separated in two containers inside a reactor and heated from room temperature to 350 °C at a heating rate of 1 °C/min. The results showed that LiNH₂ would decompose into Li₂NH and NH₃ to certain extent even at a relatively low temperature. Ammonia then reacted with Al and LiH that decomposed from LiAlH₄, whereupon the chemical equilibrium of the system was altered and the initial reaction temperature was lowered. Ammonia decomposed from LiNH₂ acted as an intermediate. A pathway for the thermal decomposition of the system was proposed as:

$$\text{LiNH}_2 + \text{LiAlH}_4 \rightarrow \frac{8 - 3m}{10}\text{Li}_2\text{NH} + \frac{2 + 3m}{5}\text{LiH} + \frac{2 + 3m}{10}\text{AlN} + \frac{8 - 3m}{10}\text{Al} + \frac{48 - 3m}{20}\text{H}_2 \quad (0 < m < 1)$$

The heating rate and initial molar ratio of reactants will affect the value of m, thus the final resultants vary. The theoretical hydrogen desorption capacity of the system was calculated to be in the range of 7.39–7.88 wt.% and a total desorption capacity of 7.37 wt.% was obtained by thermal decomposition. © 2009 Elsevier B.V. All rights reserved.

1. Introduction

One of the main problems of the "hydrogen economy" is finding lightweight materials that could reversibly store great amounts of hydrogen at moderate pressures and temperatures [1]. An extensive range promising materials have been investigated including Mg-compounds, amides, and complex hydrides [2]. Among these different classes of potential hydrogen storage materials, the complex hydrides, such as tetrahydroaluminates (alanates), hexahydroaluminates, amides and imides of the alkali and alkali-earths, or mixtures of these hydrides, remain attractive and continue to draw considerable interest among researchers. Alanates of the general form MAlH₄, where M is a lightweight alkaline metal (Li, Na or K), have a high gravimetric density of hydrogen, which is essential for their potential use as hydrogen storage materials. Among the alanates, LiAlH₄ is one of the most interesting compounds because of its high hydrogen-capacity (10.5 wt.%). It thermally releases hydrogen through the following three general

reactions [3]:

 $Li_3AIH_6 \rightarrow 3LiH + AI + (3/2)H_2(2.6 \text{ wt.}\%H_2) \quad (T = 180-220 \,^{\circ}\text{C})$

 $LiH + Al \rightarrow LiAl + (1/2)H_2(2.6 \text{ wt.}\%H_2) \quad (T = 400-420 \,^{\circ}\text{C}) \quad (3)$

The thermal decomposition temperature of LiAlH₄ is too high for practical use owing to thermodynamic and kinetic limitations [4]. Therefore, various strategies have been proposed and adopted to improve the hydrogen storage performance of LiAlH₄, such as destabilizing with metal hydrides [5,6], mechanical grinding treatment [7–9], partial cation substitution [10], and addition of catalysts [11] among others.

Lu and Fang [12] have reported that LiAlH₄ combined with LiNH₂ in a specific molar ratio without any catalysts would release a large amount of hydrogen (~8.1 wt.%) at 85–320 °C, which is much lower than the reaction temperature of reaction (1). He proposed that LiNH₂ reacted with LiH generated by reaction (2). Therefore, the reaction was accelerated and decomposition temperature was decreased. In contrast, Xiong et al. [13] considered that LiAlH₄

^{*} Corresponding author. Tel.: +86 571 8795 2716; fax: +86 571 8795 2716. *E-mail address*: xinhuawang@zju.edu.cn (X.H. Wang).

^{0925-8388/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2009.12.081

Fig. 1. Schematic diagram of the experimental device.

would react with LiNH₂ to form an intermediate during mechanical grinding at an ambient temperature. The chemical process for LiAlH₄-LiNH₂ interaction could be described as:

$$LiAlH_4 + LiNH_2 \rightarrow (1/3)Li_3AlH_6 - LiNH_2 - (2/3)Al + 2H$$

$$\rightarrow [Li_2AlNH] + 5H$$
(4)

As reactants have a tendency to turn into amorphous crystals, some detection methods become invalid for mechanical grinding systems. With solid-state nuclear magnetic resonance (NMR) techniques, Dolotko et al. [14] confirmed the formation of AlN during mechanical grinding. A new transformation mechanism for a LiAlH₄–LiNH₂ mechanical grinding system through a series of completing solid-state processes was presented as follows:

$$2\text{LiAlH}_4(s) + \text{LiNH}_2(s) \rightarrow \text{Li}_3\text{AlH}_6 + \text{AlN}(s) + 2\text{H}_2(g)$$
(5)

$$Li_{3}AlH_{6}(s) + LiNH_{2}(s) \rightarrow 4LiH + AlN(s) + 2H_{2}(g)$$
(6)

As LiNH₂ is an efficient and widely used additive [15], its catalytic mechanism should be investigated thoroughly. In previously published papers, ammonia release in the LiAlH₄–LiNH₂ system is not taken into consideration, although there are considerable evidences prove that LiNH₂ will release ammonia when heated [16]. NH₃ will not only damage the catalyst in a fuel cell, but will also accelerate the cyclic instability of hydrogen storage materials. Therefore, reducing the ammonia emission level is important for N-containing metal complex hydrogen storage systems. The present study focuses on the role that ammonia plays and examines potential reaction pathways for the LiAlH₄–LiNH₂ system.

2. Experimental methods

The initial materials, LiAlH₄ (95%, CAS:16853-85-3), LiNH₂ (95%, CAS:7782-89-0) and AlN (98%, CAS:24304-00-5) were purchased from Aldrich Chemical and used as received, without any further purification. Influence of the impurities in the initial materials to the final experimental results was not taken into consideration. To prevent samples and raw materials from undergoing oxidation and/or hydrox-ide formation, they were stored and handled in an argon-filled glovebox (Mbraun MB200B). Pure LiAlH₄ and LiNH₂ with a molar ratio of 1:1 and a total weight of about 1 g were placed separately into two stainless steel containers. Both containers were placed into an airtight reactor and evacuated as shown in Fig. 1. The volume of the reactor was large enough so that the pressure variation inside the reactor was then heated not affect the decomposition process of the reaction. The reactor was then heated

Fig. 2. Relationship between the temperature and hydrogen desorption capacity. (The reactor was heated from room temperature to $350 \,^{\circ}$ C at a heating rate of $1 \,^{\circ}$ C/min, and was then maintained at $350 \,^{\circ}$ C for 5 h.).

from room temperature to $350\,^{\circ}$ C at a heating rate of $1\,^{\circ}$ C/min, and maintained at $350\,^{\circ}$ C for 5 h. The relationship between temperature and pressure was recorded by computer.

The thermal gas desorption properties of the mixtures were determined by a thermogravimetry analyzer (TG) (Netzsch STA449F3) upon heating to 500 °C at a heating rate of 5 °C/min. The flow rate of argon of 99.99% purity was maintained at 40 mL/min throughout entire heating process. The outlet gas from the TG analyzer was constantly monitored using a Quadropolc Mass Spectroscopy (QMS) (Netzsch QMS 403C). The gases monitored included H₂ and NH₃. Structural analysis was carried out using a Rigaku D/max-3B X-ray diffractometer using Cu-K_{\mathbf{\mathbf{K}}} radiation at room temperature. For NMR analysis, the ²⁷Al and ⁷Li solid-state NMR experiments were performed on a Bruker Avance II 300 MHz spectrometer. AlN(98%) from Alfa-Aesar was used as standard. The samples and the reference compounds were packed in MAS zirconia rotors in a glove box under argon atmosphere and tightly capped to minimize the possibility of oxygen contamination. The ²⁷Al and ⁷Li packs of Al(NO₃) and LiCl. ²⁷Al and ⁷Li packs of Al(NO₃) and LiCl. solutions were made as standard and marked as 0 ppm, respectively.

Structure analysis was carried out using a Rigaku D/max-3B X-ray diffractometer using Cu-K_{α} radiation at room temperature. The XRD samples were covered with a special plastic tape to prevent the contact of the sample with water vapor and oxygen.

3. Results and discussion

Fig. 2 shows the relationship between desorption capacity and temperature inside the reactor. The reaction appears to consist of three steps: the first step ranges from $120 \,^{\circ}$ C to $170 \,^{\circ}$ C; the second step ranges from $170 \,^{\circ}$ C to $210 \,^{\circ}$ C; and the third step is above $210 \,^{\circ}$ C. TG–DSC analysis results of the commercial LiNH₂, LiAlH₄, and mixtures of LiAlH₄ and LiNH₂ in a molar ratio of 1:1, with and without mechanical grinding treatment, are shown in Fig. 3. The initial decomposition temperature of commercial LiAlH₄ is about $150 \,^{\circ}$ C, which is similar to the literature value [3]. Figs. 2 and 3 clearly show that the initial decomposition temperature of the system designed in the present study is lower than that of commercial LiAlH₄ and LiNH₂. As the reactants were separated from each other, solid contact reactions could be excluded, so we consider that the NH₃ emitted by LiNH₂ reacted with LiAlH₄ (or decomposition products of LiAlH₄) and allowed the overall reaction to continue.

The mixture of LiAlH₄ and LiNH₂ prepared without mechanical grinding decomposed within four steps. Little weight loss of about 0.91 wt.% around 100 °C occurred during the first step owing to the mild decomposition of LiNH₂ (Fig. 3(c)), as the TG line of the mixture during this step was quite similar to that of commercial LiNH₂. The reaction characteristics of the other three steps were the same to that of commercial LiAlH₄, which indicates that the mixture of LiAlH₄ and LiNH₂ decomposed severally in the open

Fig. 3. TG/DSC curves of as-received LiNH₂ and LiAlH₄, and their mixture. (a) As-received LiAlH₄; (b) as-received LiNH₂; (c) mixture of LiNH₂ and LiAlH₄ in a molar ratio of 1:1 without mechanical grinding and (d) mixture of LiNH₂ and LiAlH₄ in a molar ratio of 1:1 ball milled for 3 h under Ar atmosphere.

environment because it was difficult to retain NH_3 released from $LiNH_2$ in the system. However, the mechanical grinding treatment allowed the release of a certain amount of H_2 [11,12], which suggested a solid contact reaction was taking place during mechanical grinding treatment.

These two points indicate that there are two possibilities for the reaction between LiAlH₄ and LiNH₂: through solid contact or through a gaseous ammonia intermediate. The solid contact reaction has been studied by many groups [16,17], in this paper, we focus on the gaseous ammonia reaction. In the present case, LiAlH₄ and LiNH₂ were physically separated so that the solid contact reaction was not possible. Ammonia should be the only gaseous intermediate interacting between LiAlH₄ and LiNH₂.

The endothermic peak in DSC curve of LiNH₂ in Fig. 3(b) reveals that LiNH₂ decomposes most intensely at about 372 °C, but some decomposition occurred even at relatively milder temperatures below 100 °C, as shown by its TG curve. LiNH₂ has been shown to decompose to a different extent across a broad temperature range between 60 °C and 500 °C [17,18], which could be described as the following reaction:

$$2\text{LiNH}_2 \rightarrow \text{Li}_2\text{NH} + \text{NH}_3 \tag{7}$$

Compared the DSC curves of the mixtures of LiAlH₄–LiNH₂ composites with the received LiNH₂, another phenomenon can be observed. Endothermic peaks of the mixtures corresponding to the intense decomposition of LiNH₂ decrease or even disappear when a mechanical grinding treatment is carried out, which indicates that LiAlH₄ makes the decomposition of LiNH₂ more continuous and efficient. Generally speaking, ammonia is harmful to hydrogen storage systems, so the ammonia release level should be strictly monitored and controlled. In the present system under study, the reaction continued with the aid of ammonia. Fig. 4 shows the composition profile of the effluent gas from the LiAlH₄ + LiNH₂ mixture without a mechanical grinding treatment. Peaks on the M2 (H₂) curve around 175 °C and 230 °C corresponded to the decomposition of LiAlH₄ and Li₃AlH₆, respectively. The NH₃ concentrations

Fig. 4. The composition profile of the effluent gas released from $LiAlH_4 + LiNH_2$ mixture without mechanical grinding treatment as a function of temperature. (The heating rate is 5 °C/min with an argon flowing rate of 40 mL/min in the entire heating process.).

were quantified using the intensity of $\rm NH_2^+$ species with a massto-charge ratio of 16. The intensity of $\rm NH_3^+$ species was not used to quantify $\rm NH_3$ because of the presence of $\rm OH^+$ species which had the same mass-to-charge value to $\rm NH^{3^+}$ [19]. The concentration curve for $\rm NH_2^+$ exhibited a linear response to temperature as reaction temperature increased from room temperature to about 260 °C. A small peak around 60 °C was found as shown in the inner image of Fig. 4, which indicated that LiNH₂ could decompose slightly even at low temperature, as $\rm NH^{2^+}$ could be ionized from $\rm NH_3$ only in this system.

The X-ray diffraction pattern of LiAlH₄ held at 150 °C for 1 h revealed trace amounts of AlN and Li₃AlH₆. This is because ammonia released by LiNH₂ at low temperature can react with the Al decomposed from LiAlH₄. Zhang et al. [5] found that Al particles decomposed from LiAlH₄ to achieve an extraordinarily high dispersion over the compound and have a high activity. Our previous experiments showed that Al with high activity will react with NH₃ to form AlN and H₂. As shown in Fig. 5(c), the XRD pattern of Al powder mechanically ground under 5 atm of NH₃ atmosphere for 5 h confirmed the presence of the AlN phase. In contrast, ordinary Al powder seems to be much more stable because of the compact Al₂O₃ surface film.

Fig. 5 exhibits the XRD patterns of the products synthesized under different reaction temperatures for 1 h as shown in Fig. 1. The products of LiAlH₄ held at 150 °C contained a minor AlN phase, while at 200 °C, LiH, AlN and Li₃AlH₆ were found, Li₂NH and Al were detected as the reactor was heated to 300 °C. For LiNH₂, peaks corresponding to LiNH₂ decreased and ultimately disappeared as the reaction temperature increased, replaced by peaks corresponding to Li₂NH. Since commercial LiAlH₄ does not contain N element, the N element in LiAlH₄ products must have arisen from NH₃ transferred from LiNH₂.

As AlN presented in a predominantly amorphous form [17], the intensity of peaks corresponding to AlN was fairly low and below the limits for accurate X-ray diffraction measurement. In order to further confirm the presence of AlN, we carried out ²⁷Al measurement of probable candidates for intermediate and final products of the transformation, including initial LiAlH₄, and LiAlH₄ held at 150 °C, 200 °C and 300 °C for 1 h (heated from room temperature and then held at target temperature for 1 h). The NMR measurements shown in Fig. 6 indicate that AIN was formed when temperatures reached 150°C and the quantity of AlN increased linearly with increase in reaction temperature. In contrast, the peak corresponding to LiAlH₄ decreased and ultimately vanished as transformation continued. NMR analysis of the ⁷Li spectra (Fig. 6(b)) showed the formation of Li₂NH. The LiNH₂ sample held at 300 °C contained LiNH₂ and Li₂NH, which meant that LiNH₂ could not completely decompose into Li₂NH at 300 °C within 1 h. In other words, the reaction kinetics was relatively slow.

Based on this analysis, we divide the reaction process into three stages, as shown in Fig. 2. The transformation occurring in Stage I can be described as follows:

$$\text{LiAlH}_4 \rightarrow \text{Li}_3\text{AlH}_6 + (1/3)\text{Al} + \text{H}_2 \tag{8}$$

 $LiNH_2 \rightarrow (1/2)Li_2NH + (1/2)NH_3$ (9)

$$AI + NH_3 \rightarrow AIN + (3/2)H_2 \tag{10}$$

The wave line of the TG curve in Fig. 3(a) represents the melting of LiAlH₄. The melting point of LiAlH₄ is close to the decomposition temperature of Li₃AlH₆ [3], at about 170 °C. Residual LiAlH₄ started to melt at Stage II, as temperature reached the melting point. At the same time, Li₃AlH₆ acting as an intermediate decomposed according to reaction (2). The decomposition products of Li₃AlH₆ consisted of Al, H₂ and LiH. Leng et al. have reported that LiH quickly reacts with NH₃, even at room temperature [19]. The NH₃ produced from LiNH₂ decomposition reacted simultaneously with Al

Fig. 5. XRD patterns of reactants and resultants synthesized at different temperatures. (a) Resultants of LiAlH₄ at 150 °C, 200 °C and 300 °C for 1 h; (b) resultants of LiNH₂ at 200 °C and 300 °C for 1 h and (c) Al powder ball milled under 5 atm of NH₃ for 5 h.

and LiH to form Li₂NH and AlN at Stage II. Because the decomposition process of LiNH₂ was dependent on the chemical equilibrium, the decomposition of LiNH₂ could not proceed rapidly enough. The XRD pattern of the LiAlH₄ products at Stage II (Fig. 5(a), 200 °C) revealed a small amount of LiAlH₄, Li₂NH and Li₃AlH₆. As previously mentioned, commercial LiAlH₄ powder contains no N element, so

Fig. 6. ²⁷Al and ⁷Li MAS NMR spectra of the mixture of LiAlH₄ + LiNH₂ kept at different temperatures for 1 h. (a) ²⁷Al MAS NMR spectra and (b) ⁷Li MAS NMR spectra.

the N element seen here must have been transferred from $LiNH_2$ by a gaseous ammonia intermediate. The X-ray diffraction measurements confirmed the decreasing in $LiNH_2$ associating with the increasing of Li_2NH as the temperature was increased. The main reaction taking place at Stage II can be described as follows.

Residual LiAlH₄ will decompose completely at Stage II.

$$\text{LiAlH}_4 \rightarrow \text{Li}_3\text{AlH}_6 + (1/3)\text{Al} + \text{H}_2 \tag{11}$$

Decomposition of LiNH₂ will not be complete, as the XRD pattern showed massive amounts of LiNH₂ at $200 \degree C$.

$$LiNH_2 \rightarrow (1/2)Li_2NH + (1/2)NH_3$$
 (12)

Al and LiH decomposed from Li_3AlH_6 react with NH_3 to form AlN and $LiNH_2$, this reaction between NH_3 and Li_3AlH_6 may be generalized as:

$$Li_3AlH_6 + (5/2)NH_3 \rightarrow AlN + (3/2)Li_2NH + 6H_2$$
 (13)

At Stage III, the situation is quite simple. Residual Li_3AlH_6 and $LiNH_2$ will decompose completely. Li_2NH is quite stable at 350 °C, so the main reactions at Stage III could be written as follows:

$$LiNH_2 \rightarrow (1/2)Li_2NH + (1/2)NH_3$$
 (14)

Ammonia then reacts with Li_3AlH_6 to form AlN and Li_2NH as follows:

$$Li_3AlH_6 + (5/2)NH_3 \rightarrow AlN + (3/2)Li_2NH + 6H_2$$
 (15)

Since the molar ratio of LiNH₂ and LiAlH₄ is 1:1, it can be calculated that Li_3AlH_6 is present in excess. The total quantity of Li_3AlH_6 is one-third that of LiAlH₄ according to reaction (1). Therefore, residual Li_3AlH_6 likewise decomposes at Stage III, as follows:

$$\text{Li}_3\text{AlH}_6 \rightarrow 3\text{LiH} + \text{Al} + (3/2)\text{H}_2 \tag{16}$$

Combining all of these reactions, an overall reaction can be written to characterize the entire transformation of $LiNH_2$ and $LiAlH_4$ in the present system as:

$$LiNH_{2} + LiAlH_{4} \rightarrow \frac{8 - 3m}{10}Li_{2}NH + \frac{2 + 3m}{5}LiH + \frac{2 + 3m}{10}AlN + \frac{8 - 3m}{10}Al + \frac{48 - 3m}{20}H_{2} \quad (0 < m < 1)$$

where *m* represents the percentage of decomposing of $LiNH_2$ at Stage I.

We repeatedly affirmed that the transformation of the system was dominated by the chemical equilibrium, so the decomposition process for LiNH₂ is likely to be slow and continuous. Therefore, the heating rate and reaction temperature will have substantial effects on the value of *m*. Different heating rates will result in different products. On the whole, the theoretical hydrogen releasing capacity should be in the range of 7.39–7.88 wt.% as molar ratio of LiAlH₄ and LiNH₂ is 1:1. A total hydrogen desorption capacity of 7.37 wt.% was obtained (Fig. 2), which is close to the theoretical calculation. The total weight loss in TG test was about 7.53 wt.%, which is higher than the data obtained by the thermal desorption experiment. The reason for this phenomenon may be attributable to the different end temperatures, which were 500 °C for TG analysis, but only 350 °C for the thermal desorption.

4. Conclusions

An interaction between LiAlH₄ and LiNH₂ through a gaseous ammonia intermediate was studied. LiNH₂ may release ammonia across a broad range of temperatures, which reacts with Al and LiH decomposed from LiAlH₄. Ammonia is continuously produced and then consumed, making the whole reaction sustains. Because the decomposition of LiNH₂ is dominated by the chemical equilibrium, the whole reaction is slow and incomplete. The overall reaction can be expressed as:

$$LiNH_{2} + LiAlH_{4} \rightarrow \frac{8 - 3m}{10}Li_{2}NH + \frac{2 + 3m}{5}LiH + \frac{2 + 3m}{10}AlN + \frac{8 - 3m}{10}Al + \frac{48 - 3m}{20}H_{2} \quad (0 < m < 1)$$

where *m* represents the decomposition percentage of LiNH₂ when the temperature is below 170 °C (Stage I). The heating rate and initial molar ratio of LiNH₂ and LiAlH₄ in the system will affect the *m* value, so the final products may be different. The theoretical desorption capacity is calculated to range from 7.39% to 7.88% as *m* varies. A total hydrogen desorption capacity of 7.37 wt.% was obtained when LiNH₂/LiAlH₄ was heated from room temperature to 350 °C with a heating rate of 1 °C/min and maintained at the final temperature for 5 h.

Acknowledgment

This work was supported by National Natural Science Foundation of China (Nos. 50671094 and 50631020) and National Basic Research Program of China (Nos. 2007CB209706 and 2010CB631304).

References

[1] L. Schalappabach, A. Züttel, Nature 414 (2001) 353–358.

125-134.

- [2] A. Zaluska, L. Zaluski, J.O. Ström-Olsen, J. Alloys Compd. 288 (1-2) (1999) 217-225.
- [3] L. Hima Kumar, B. Viswanathan, S. Srinvivasa Murthy, Int. J. Hydrogen Energy 33 (2008) 366–373.
- [4] J.W. Jang, J.H. Shim, Y.W. Cho, B.J. Lee, J. Alloys Compd. 420 (1-2) (2006) 286-290.
- [5] Y. Zhang, Q.F. Tian, S.S. Liu, L.X. Sun, J. Power Sources 185 (2008) 1514–1518.
- [6] A.W. Vittetoe, M.U. Niemann, S.S. Srinivasan, K. McGrath, A. Kumar, D.Y. Goswami, E.K. Stefanakos, S. Thomas, Int. J. Hydrogen Energy 34 (2009) 2333–2339.
- [7] I. Zaluski, A. Zaluska, J.O. Ström-Olsen, J. Alloys Compd. 290 (1-2) (1999) 71-78.
 [8] H.W. Brinks, B.C. Hauback, C.M. Jensen, R. Zidan, J. Alloys Compd. 392 (1-2)
- (2005) 27-30. [9] A. Zaluska, L. Zaluski, J.O. Ström-Olsen, J. Alloys Compd. 298 (1-2) (2000)

- [10] Y. Nakamori, S. Orimo, Mater. Sci. Eng. B 108 (1-2) (2004) 48-50.
- [11] T. Sun, C.K. Huang, H. Wang, L.X. Sun, M. Zhu, Int. J. Hydrogen Energy 33 (2008) 6216–6221.
- [12] J. Lu, Z.G.Z. Fang, J. Phys. Chem. 109 (2005) 20830-20834.
- [13] Z.T. Xiong, G.T. Wu, J.J. Hu, P. Chen, J. Power Sources 159 (2006) 167–170.
- [14] O. Dolotko, H.Q. Zhang, O. Ugurlu, W.W. Jerzy, M. Pruski, S.L. Chumbley, V. Pecharsky, Acta Mater. 55 (2007) 3121–3130.
- [15] T. Noritake, M. Aoki, S. Towata, A. Ninomiya, Y. Nakamor, Appl. Phys. A 83 (2006) 277–279.
- [16] W.F. Luo, K. Stewart, J. Alloys Compd. 440 (2007) 357-361.
- [17] Y.H. Hu, E. Ruckenstein, Ind. Eng. Chem. Res. 42 (2003) 5135–5139.
- [18] L. Shaw, R. Ren, T. Markmaitree, W. Osborn, J. Alloys Compd. 448 (2007) 263–271.
- [19] H.Y. Leng, T. Ichikawa, S. Hino, N. Hanada, S. Isobe, H. Fuji, J. Power Sources 156 (2006) 166–170.